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As the European Union’s 
Artificial Intelligence Act 
takes effect, AI systems that 
mimic how human teams 
collaborate can improve trust 
in high-risk situations, such 
as clinical medicine.

Following a surge of excitement after 
the launch of the artificial-intelligence 
(AI) chatbot ChatGPT in November 
2022, governments worldwide have 
been striving to craft policies that will 

foster AI development while ensuring the 
technology remains safe and trustworthy. 
In February, several provisions of the Euro-
pean Union’s Artificial Intelligence Act — the 
world’s first comprehensive AI regulation 
— took effect, prohibiting the deployment 
of certain applications, such as automated 
systems that claim to predict crime or infer 
emotions from facial features.

Most AI systems won’t face an outright 
ban, but will instead be regulated using a 
risk-based scale, from high to low. Fierce 
debates are expected over the act’s classifi-
cation of ‘high-risk’ systems, which will have 
the strictest oversight. Clearer guidance 
from the EU will begin emerging in August, 
but many AI-driven clinical solutions are likely 
to attract scrutiny owing to the potential harm 
associated with biased or faulty predictions 
in a medical setting.

Clinical AI — if deployed with caution — 
could improve health-care access and out-
comes by streamlining hospital management 

Visitors to an interactive AI exhibition at the German Museum of Technology in Berlin use virtual-reality glasses to view an image of the brain.
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processes (such as patient scheduling and 
doctors’ note-taking), supporting diagnostics 
(such as identifying abnormalities in X-rays) 
and tailoring treatment plans to individual 
patients. But these benefits come with risks 
— for instance, the decisions of an AI-driven 
system cannot always be easily explained, lim-
iting the scope for real-time human oversight.

This matters, because such oversight is 
explicitly mandated under the act. High-risk 
systems are required to be transparent and 
designed so that an overseer can understand 
their limitations and decide when they should 
be used (see go.nature.com/3dtgh4x).

By default, compliance will be evaluated 
using a set of harmonized AI standards, but 
these are still under development. (Meeting 
these standards will not be mandatory, but 
is expected to be the preferred way for most 
organizations to demonstrate compliance.) 
However, as yet, there are few established 
technological ways to fulfil these forthcom-
ing legal requirements.

Here, we propose that new approaches 
to AI development — based on the standard 
practices of multidisciplinary medical teams, 
which communicate across disciplinary 
boundaries using broad, shared concepts — 
could support oversight. This dynamic offers 
a useful blueprint for the next generation of 
health-focused AI systems that are trusted 
by health professionals and meet the EU’s 
regulatory expectations.

Collaborating with AI
Clinical decisions, particularly those concern-
ing the management of people with complex 
conditions, typically take various sources of 
information into account — from electronic 
health records and lifestyle factors to blood 
tests, radiology scans and pathology results. 
Clinical training, by contrast, is highly spe-
cialized, and few individuals can accurately 
interpret multiple types of specialist medical 
data (such as both radiology and pathology). 
Treatment of individuals with complex con-
ditions, such as cancer, is therefore typically 
managed through multidisciplinary team 
meetings (known as tumour boards in the 
United States) at which all of the relevant 
clinical fields are represented.

Because they involve clinicians from 
different specialities, multidisciplinary team 
meetings do not focus on the raw character-
istics of each data type, because this knowl-
edge is not shared by the full team. Instead, 
team members communicate with reference 
to intermediate ‘concepts’, which are widely 
understood. For example, when justifying 

a proposed treatment course for a tumour, 
team members are likely to refer to aspects 
of the disease, such as the tumour site, the 
cancer stage or grade and the presence of 
specific patterns of molecular markers. They 
will also discuss patient-associated features, 
including age, the presence of other diseases 
or conditions, body mass index and frailty.

These concepts, which represent interpret-
able, high-level summaries of the raw data, 
are the building blocks of human reasoning 
— the language of clinical debate. They also 
typically feature in national clinical guidelines 
for selecting treatments for patients.

Notably, this process of debate using the 
language of shared concepts is designed to 
facilitate transparency and collective over-
sight in a way that parallels the intentions of 
the EU AI Act. For clinical AI to comply with the 
act and gain the trust of clinicians, we think 
that it should mirror these established clinical 
decision-making processes. Clinical AI — much 
like clinicians in multidisciplinary teams — 
should make use of well-defined concepts to 
justify predictions, instead of just indicating 
their likelihood.

Explainability crisis
There are two typical approaches to explain-
able AI1 — a system that explains its deci-
sion-making process. One involves designing 
the model so it has built-in rules, ensuring 
transparency from the start. For example, 
a tool for detecting pneumonia from chest 
X-rays could assess lung opacity, assign a 
severity score and classify the case on the basis 
of predefined thresholds, making its reason-
ing clear to physicians. The second approach 
involves analysing the model’s decision after 
it has been made (‘post hoc’). This can be done 
through techniques such as saliency mapping, 
which highlights the regions of the X-ray that 
influenced the model’s prediction.

However, both approaches have serious 
limitations2. To see why, consider an AI tool 
that has been trained to help dermatolo-
gists to decide whether a mole on the skin is 
benign or malignant. For each new patient, a 
post-hoc explainability approach might high-
light pixels in the image of the mole that were 
most important for the model’s prediction. 

This can identify reasoning that is obviously 
incorrect — for instance, by highlighting pix-
els in the image that are not related to the 
mole (such as pen marks or other annotations 
by clinicians)3.

When the mole is highlighted, however, 
it might be difficult2,4 for an overseeing cli-
nician — even a highly experienced one — to 
know whether the set of highlighted pixels is 
clinically meaningful, or simply spuriously 
associated with diagnosis. In this case, use 
of the AI tool might place an extra cognitive 
burden on the clinician.

A rules-based design, however, constrains 
an AI model’s learning to conform rigidly to 
known principles or causal mechanisms. Yet 
the tasks for which AI is most likely to be clin-
ically useful do not always conform to simple 
decision-making processes, or might involve 
causal mechanisms that combine in inher-
ently complex or counter-intuitive ways. Such 
rules-based models will not perform well in 
precisely the cases in which a physician might 
need the most assistance.

In contrast to these approaches, when a der-
matologist explains their diagnosis to a col-
league or patient, they tend not to speak about 
pixels or causal structures. Instead, they make 
use of easily understood high-level concepts, 
such as mole asymmetry, border irregularity 
and colour, to support their diagnosis. Clini-
cians using AI tools that present such high-
level concepts have reported increased trust 
in the tools’ recommendations5.

In recent years, approaches to explainable 
AI have been developed that could encode 
such conceptual reasoning and help to sup-
port group decisions. Concept bottleneck 
models (CBMs) are a promising example6. 
These are trained not only to learn outcomes 
of interest (such as prognosis or treatment 
course), but also to include important inter-
mediate concepts (such as tumour stage or 
grade) that are meaningful to human overse-
ers. These models can thereby provide both 
an overall prediction and a set of understand-
able concepts, learnt from the data, that jus-
tify model recommendations and support 
debate among decision makers.

This kind of explainable AI could be particu-
larly useful when addressing complex prob-
lems that require harmonization of distinct 
data types. Moreover, they are well suited 
to regulatory compliance under the EU AI 
Act, because they provide transparency in a 
way that is specifically designed to facilitate 
human oversight. For example, if a CBM incor-
rectly assigns an important clinical concept to 
a given patient (such as predicting an incorrect 

“Use of the AI tool  
might place an extra 
cognitive burden on  
the clinician.”
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tumour stage), then the overseeing clinical 
team immediately knows not to rely on the AI 
prediction.

Moreover, because of how CBMs are trained, 
such concept-level mistakes can also immedi-
ately be corrected by the clinical team, allowing 
the model to ‘receive help’7 and revise its over-
all prediction and justification with the aid of 
clinician input. Indeed, CBMs can be trained 
to expect such human interventions and use 
them to improve model performance over time.

CBMs have also been developed to take 
account of ‘unknown concepts’ — that is, sources 
of important variation in the data related to out-
comes of interest that are not accounted for by 
known concepts (see go.nature.com/3xtepne). 
Doing so might improve model accuracy8 and 
allow the overseer to assess the extent to which 
the model’s predictions are based on informa-
tion that cannot be explained by the concepts 
it was trained to learn.

Predictions that rely heavily on unknown 
concepts can then be flagged for further inves-
tigation or discarded entirely — as is required 
by the EU AI Act. In the context of a clinical 
multidisciplinary team meeting, this might 
signal to the team not only that more data are 
required to make an effective decision, but 
also what type of data are needed.

The way forward
Despite the importance of collective 
decision-making to clinical medicine, group 
decisions are often fallible. Human factors such 
as time pressure, decision fatigue and group 
politics can contribute significantly to deci-
sion-making efficacy9–11. AI has the potential to 

ameliorate such human factors. However, to do 
so in a safe, trustworthy and legally compliant 
way, it should be attuned to the social, psycho-
logical and procedural facets of group debate.

Tools that do so can be built only by strongly 
collaborative multidisciplinary teams that 
gather input from the full range of stakehold-
ers and practitioners, alongside technical AI 
expertise. The teams must also work together 
throughout the development pipeline, not 
just at deployment.

Although the need for such multidiscipli-
nary teams in AI development is well known12, 

it is not enough to simply recognize this fact 
and place the burden of building such teams 
on individual developers. These systemic 
issues cannot be properly addressed in an 
ad hoc way; rather, they require coordinated 
commitment by academic, clinical, regulatory 
and governmental stakeholders to establish 
new approaches to education, training, infra-
structure development and working culture.

Two issues are immediately relevant. First, 
multidisciplinary communities by their nature 
require active management and maintenance. 
Roles such as research community manag-
ers — individuals who are highly trained in 
communication, strategic planning, stake-
holder mapping and engagement13  —  are 

therefore crucial. They should be prioritized 
when building AI development teams and val-
ued in organizations that do so.

Second, truly sustainable integration of 
disciplines also requires individuals with 
cross-disciplinary interests and expertise 
who can act as connectors between different 
fields. However, most stakeholder communi-
ties, such as academia and clinical medicine, 
are highly specialized at senior levels — indeed, 
specialization is often a prerequisite for career 
progression.

Institutions that are interested in develop-
ing successful clinical AI tools should establish 
career pathways that encourage the devel-
opment of cross-disciplinary expertise and 
incentivize individuals to work between con-
ventionally distinct technical and clinical areas.

The EU AI Act provides the impetus to estab-
lish these positions and practices. Overcoming 
the challenges that emerge along the way will 
require new ways of working. These must rec-
ognize the place of AI technologies in the wider 
clinical context, and provide support for clinical 
teams so that they can make better-informed 
decisions for the benefit of all patients.
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The European Parliament in Brussels adopted the Artificial Intelligence Act last March.

“Institutions should 
establish career pathways 
that encourage cross-
disciplinary expertise.”

G
EE

R
T

 V
A

N
D

EN
 W

IJ
N

G
A

ER
T

/A
P

 P
H

O
T

O
/A

LA
M

Y

34  |  Nature  |  Vol 639  |  6 March 2025

Comment


